PowerAmp Design

HIGH POWER OPERATIONAL AMPLIFIER

PAD119A

Rev E

KEY FEATURES

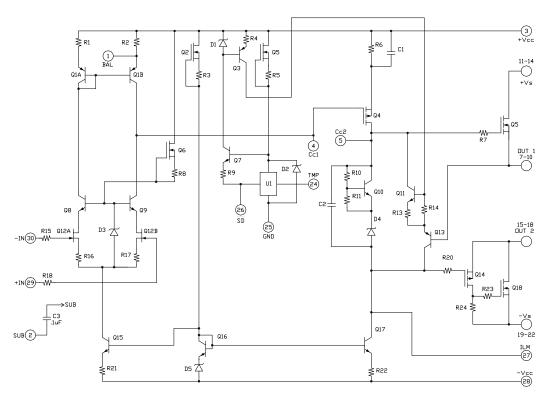
- LOW COST
- HIGH VOLTAGE 200 VOLTS
- HIGH OUTPUT CURRENT UP TO 30A
- 165 WATT DISSIPATION CAPABILITY
- 400 WATT OUTPUT CAPABILITY
- WIDE SUPPLY RANGE $\pm 12V \pm 100V$
- INTEGRATED HEAT SINK AND FAN
- TEMPERATURE REPORTING
- OVER-TEMPERATURE SHUTDOWN
- RoHS COMPLIANT

APPLICATIONS

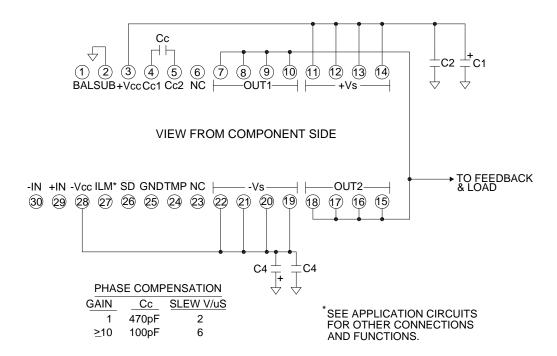
- LINEAR MOTOR DRIVE
- INDUSTRIAL AUDIO
- SEMICONDUCTOR TESTING
- VIBRATION CANCELLATION
- MAGNETIC BEARINGS

DESCRIPTION

The PAD119A high power operational amplifier is constructed with surface mount components to provide a cost effective solution for many industrial applications. With a footprint only 5.6 the PAD119A offers outstanding in. performance that rivals much more expensive hybrid component amplifiers or rack-mount amplifiers. User selectable external compensation tailors the amplifier's response to the application requirements. The PAD119A also features a substrate temperature reporting output and overtemp shutdown and is also compatible with the PAD125 Current Limit Accessory Module. The amplifier circuitry is built on a thermally conductive but electrically insulating substrate mounted to an integral heat sink and fan assembly. The PAD119A replaces the PAD119, the differences being the PAD119A brings out an internal node on pin 27 (ILM) to help construct an external linear current limit circuit if needed (see Application Circuits) and is also RoHS compliant.



PAD119A MOUNTED IN EVALUATION KIT


A NEW CONCEPT

A critical task in any power amplifier application is cooling the amplifier. Until now component amplifier manufacturers often treated this task as an after-thought, left for the user to figure out. At **Power Amp Design** the best heat sink and fan combination is chosen at the start and becomes an integral part of the overall amplifier design. The result is the most compact and volumetric efficient design combination at the lowest cost. In addition, this integrated solution concept offers an achievable real-world power dissipation rating, not the ideal rating usually cited when the amplifier case is somehow kept at 25°C. The user no longer needs to specify, procure or assemble separate components.

EQUIVALENT CIRCUIT

AMPLIFIER PINOUT & CONNECTIONS

PAD119A HIGH POWER OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATINGS

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

SUPPLY VOLTAGE, +Vs to -Vs⁷ 200V INPUT VOLTAGE +Vcc to -Vcc⁷ $220V^{7}$ DIFFERENTIAL INPUT VOLTAGE SUPPLY VOLTAGE +Vcc to -Vcc ± 20V TEMPERATURE, pin solder, 10s OUTPUT CURRENT, peak 30A, within SOA 300°C POWER DISSIPATION, internal, DC 165W TEMPERATURE, junction² 150°C $-40 \text{ to } 70^{\circ}\text{C}^{5}$ OPERATING TEMPERATURE, heat sink -40 to 105°C TEMPERATURE RANGE, storage

PARAMETER	TEST CONDITIONS ¹	MIN	TYP	MAX	UNITS
INPUT					
OFFSET VOLTAGE			1	5	mV
OFFSET VOLTAGE vs. temperature	Full temperature range		20	50	μV/ ^o C
OFFSET VOLTAGE vs. supply				20	μV/V
BIAS CURRENT, initial ³				100	pA
BIAS CURRENT vs. supply				0.1	pA/V
OFFSET CURRENT, initial				50	pA
INPUT RESISTANCE, DC			100		GΩ
INPUT CAPACITANCE			4		pF
COMMON MODE VOLTAGE RANGE		± Vcc ∓ 12			V
COMMON MODE REJECTION, DC		92			dB
NOISE	100kHz bandwidth, 1kΩ R _s		10		μV RMS
SHUTDOWN (SD)	Grounded			1	mA
GAIN					
OPEN LOOP	$R_{L} = 100\Omega, C_{C} = 100pF$	108			dB
GAIN BANDWIDTH PRODUCT @ 1MHz	C _C =100pF		1		MHz
PHASE MARGIN	Full temperature range	60			degree
OUTPUT	1 5				
VOLTAGE SWING	$I_{O} = 20A$	+Vs=6.1			V
VOLTAGE SWING	$I_0 = -20A$	-Vs+6.1			V
CURRENT, continuous, DC		20			A
CURRENT, peak within SOA				30	A
SLEW RATE, $A_V = -10$	$C_{\rm C} = 100 \rm pF$	7	8.5		V/µS
SETTLING TIME, to 0.1%	2V Step		2		μS
RESISTANCE	No load, DC		3		Ω
POWER SUPPLY					
VOLTAGE ⁷		± 12	± 125	± 150	V
CURRENT, quiescent			24	30	mA
THERMAL			24	30	III X
RESISTANCE, AC, junction to air ⁴	Full temperature range, f ≥ 60Hz			.46	°C/W
RESISTANCE, AC, junction to air	Full temperature range			.76	°C/W
TEMPERATURE RANGE, heat sink	Tun temperature range	-40		105	°C
FAN, 60mm dc brushless, ball bearing		40		103	C
OPERATING VOLTAGE			12		V
OPERATING VOLTAGE OPERATING CURRENT			150		mA
AIR FLOW			25		CFM
RPM			3800		RPM
NOISE			30		dB
L10, life expectancy, 50°C ⁶			45		kHrs
L10, He expectancy, 50 C			60		kHrs
L10, life expectancy, 25°C ⁶			00		кпіх

NOTES:

- 1. Unless otherwise noted: $T_C=25^{\circ}$ C, compensation Cc=470pF, DC input specifications are \pm value given, power supply voltage is typical rating.
- 2. Derate internal power dissipation to achieve high MTBF.
- 3. Doubles for every 10°C of case temperature increase.
- 4. Rating applies if the output current alternates between both output transistors at a rate faster than 60Hz.
- 5. Limited by fan storage characteristics. During operation, even though the case may be at 85°C the fan will be at a lower temperature.
- 6. L10 refers to the time it takes for 10% of a population of fans to fail. MTBF (Mean Time Before Failure), on the other hand, refers to a 50% failure rate. The MTBF of fans used by Power Amp Design is 210 kHrs at 50C.
- 7. +Vcc and -Vcc must not be more than 20V greater than +Vs and -Vs respectively

COOLING FAN

The PAD119A relies on its fan for proper cooling of the amplifier. Make sure that air flow to the fan and away from the heat sink remains unobstructed. The cooling method used is impingement cooling, which means that cool air is pushed into the heat sink and warm air is exhausted through the spaces between the heat sink fins. To eliminate electrical noise created by the cooling fan we recommend a $47\mu F$ capacitor placed directly at the point where the fan wires connect to the PCB. See application note AN-24 for further details.

MOUNTING THE AMPLIFIER

The amplifier is supplied with four 4-40 M/F hex spacers at the four corner of the amplifier. Since the male threaded ends of the spacers extend beyond the amplifier pins the spacers provide a convenient alignment tool to guide the insertion of the amplifier pins into the circuit board. Once the amplifier is seated secure the module with the provided 4-40 nuts and torque to 4.7 in lb [53 N cm] max. See "Dimensional Information" for a detailed drawing.

PHASE COMPENSATION

The PAD119A **must** be phase compensated to operate correctly. The compensation capacitor, C_C , is connected between pins 4 and 5. On page 6, Typical Performance Graphs, you will find plots for small signal response and phase response using compensation values of 100pF and 470pF. The compensation capacitor must be an NPO type capacitor rated for the full supply voltage (300V). On page 2, under *Amplifier Pinout & Connections*, you will find a table that gives recommended compensation capacitance value for various circuit gains and the resulting slew rate for each capacitor value. A compensation capacitor less than 100pF is not recommended.

TEMPERATURE REPORTING

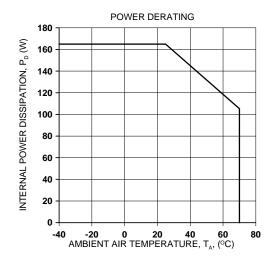
An analog output voltage is provided (pin 24, TMP) relative to ground and proportional to the temperature in degrees C. The slope is approximately $-10.82 \text{mV/}^{\circ}\text{C}$. The output voltage follows the equation:

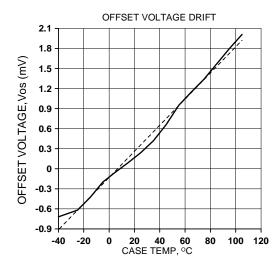
$$T = (2.127 - V) (92.42)$$

Where V is the TMP output voltage and T is the substrate temperature in degrees C.

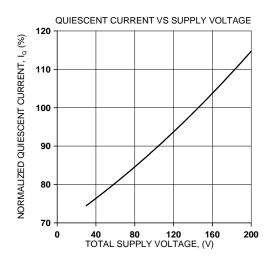
THERMAL SHUTDOWN

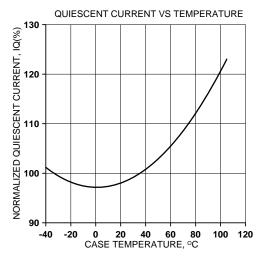
The temperature monitoring circuit automatically turns off the output transistors when the substrate temperature reaches 110°C . When the substrate cools down 10°C the output is enabled once again. The thermal shutdown feature is activated either by amplifier overloads or a failure of the fan circuit.

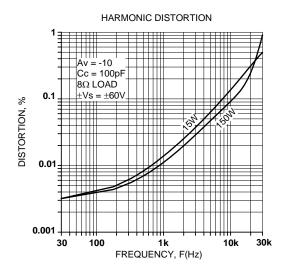

EXTERNAL SHUTDOWN

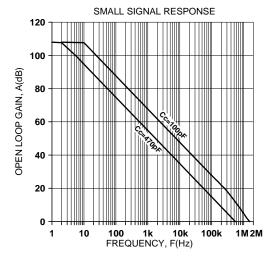

When pin 26 (\$\overline{SD}\$) is taken low (ground) the output stage is turned "off" and remains "off" as long as pin 26 is low. When pin 26 is monitored with a high impedance circuit it also functions as a flag, reporting when the amplifier is shut down. A "high" (+5V) on pin 26 indicates the temperature is in the normal range. A "low" (ground) indicates a shutdown condition. See **Application Circuits** for details on how to implement an external shutdown circuit and how to monitor the shutdown status.

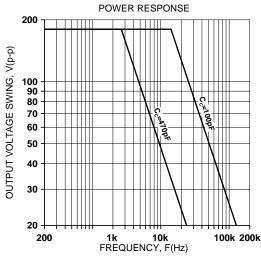

CURRENT LIMIT

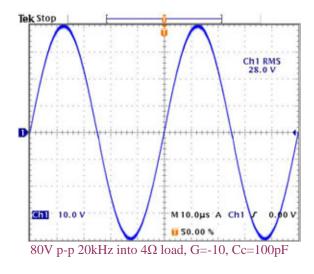

The PAD119A does not have a current limiting circuit built in. However, a precision Current Limit Accessory Module, model PAD125, is available if the current limiting function is needed for the application. The PAD125 actually shuts down the amplifier instead of a conventional linear current limit function. See the PAD125 data sheet and **Application Circuits Figure 2** for a typical connection diagram.

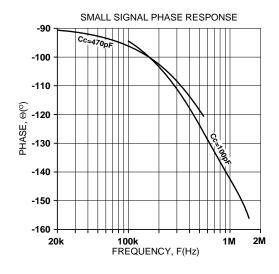

A conventional linear current limit circuit can be constructed externally and connected to pins 5 (Cc2) and 27 (ILM). This type of current limit circuit may be adequate for some applications but is not as precise as the PAD125 and may not offer amplifier protection in some applications. See application note AN-12. See also **Application Circuits Figure 3**.

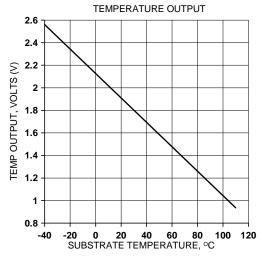


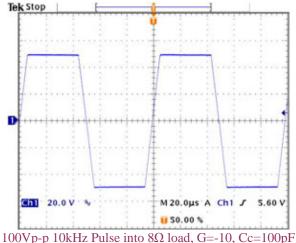


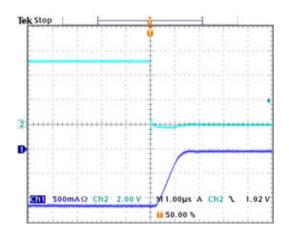


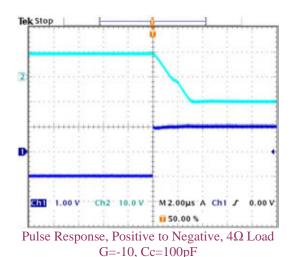


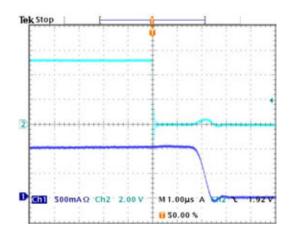


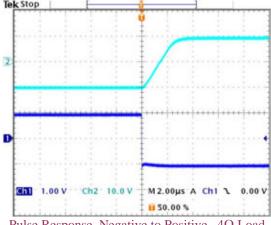




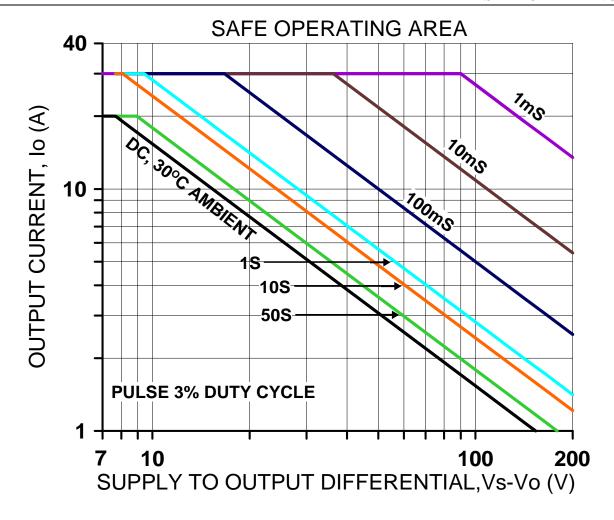





SHUTDOWN RESPONSE, NEGATIVE OUTPUT TO ZERO TRANSITION

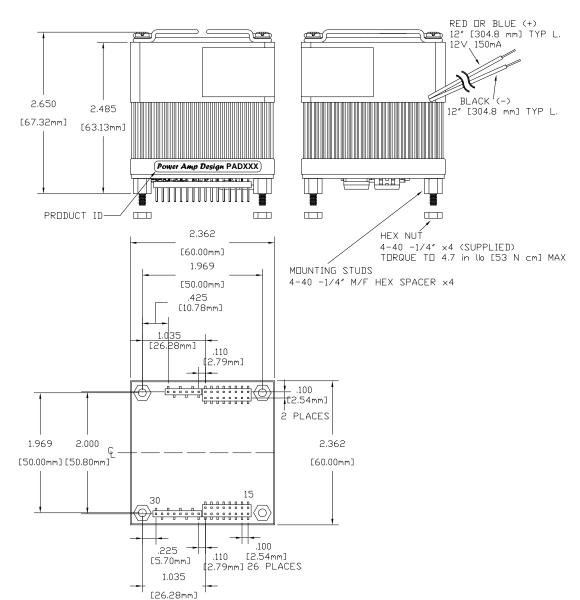

The oscilloscope display at the left shows an expanded view of a 1kHz 1.2A p-p amplifier output signal being interrupted near the negative peak by a shutdown signal on Ch2. The Ch1 display shows the output *current* going to zero about 1.5µS after the shutdown signal goes low.

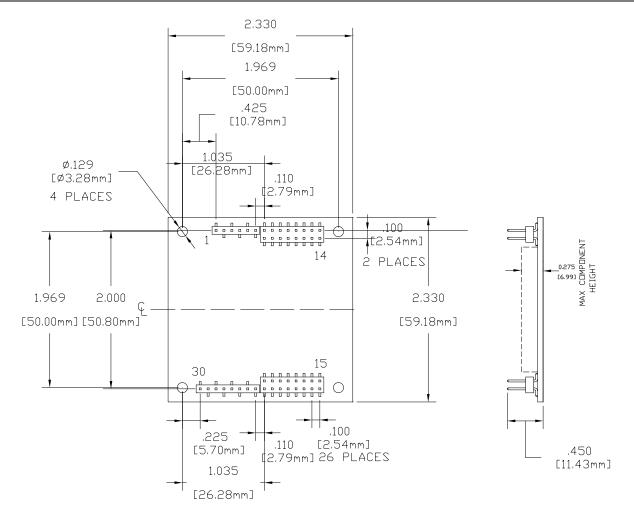
SHUTDOWN RESPONSE, POSITIVE OUTPUT TO ZERO TRANSITION

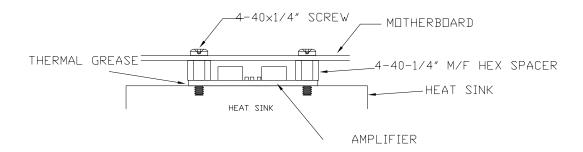

The oscilloscope display at the right shows an expanded view of a 1kHz 1.2A p-p amplifier output signal being interrupted near the positive peak by a shutdown signal on Ch2. The Ch1 display shows the output *current* going to zero about 2.5µS after the shutdown signal goes low.

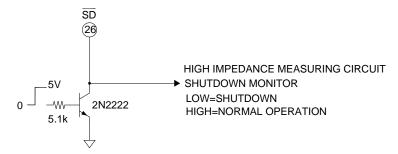


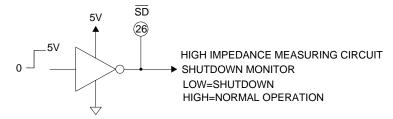
Pulse Response, Negative to Positive , 4Ω Load G=-10, Cc=100pF


SAFE OPERATING AREA


The safe operating area (SOA) of a power amplifier is its single most important specification. The SOA graph presented above serves as a first approximation to help you decide if the PAD119A will meet the demands of your application. But a more accurate determination can be reached by making use of the **PAD Power**™ spreadsheet which can be found in the **Power Amp Design** website under the **Design** Spreadsheet tab. While the graph above adequately shows DC SOA and some pulse information it does not take into account ambient temperatures higher than 30°C, AC sine, phase or non-symmetric conditions that often appear in real-world applications. The **PAD Power**™ spreadsheet takes all of these effects into account.


NOTES:


- 1. PINS .0.025" SQUARE X30
- 2. RECOMMENDED HOLE FOR MOUNTING 0.129" X4
- 3. RECOMMENDED HOLE FOR PINS 0.052" D.
- 4. TOTAL ASSEMBLY WEIGHT APPROX 8.1 oz [230 g]
- 5. HEAT SINK WEIGHT
 APPROX 4.55 oz [129 g]



- NOTES: 1: DIMENSIONS ARE INCHES, [mm]
 - 2: PINS 0.025" SQUARE [0.635mm], GOLD PLATED
 - 3: WEIGHT: 1.065 DZ [30.3 g]
 - 4: RECOMMENDED HOLE FOR PINS 0.052" D. [1.321mm]
 - 5: HIGHLY RECOMMENDED THAT AMPLIFIER IS MOUNTED INTO CAGE JACKS USING PAD PART NUMBER CJS01. USE 0.062" [1.575mm] HOLE FOR CAGE JACKS.
 - 6: HIGHLY RECOMMENDED THAT AMPLIFIER IS MOUNTED INTO HEAT SINK WITH 4-40 M/F SPACERS TO PROVIDE STRAIN RELIEF FOR PINS. SEE DRAWING BELOW.

TRANSISTOR CIRCUIT

OPEN COLLECTOR OR OPEN DRAIN LOGIC GATES CIRCUIT

FIGURE 1. EXTERNAL SHUTDOWN WITH MONITOR

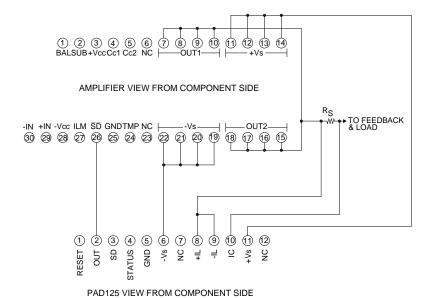
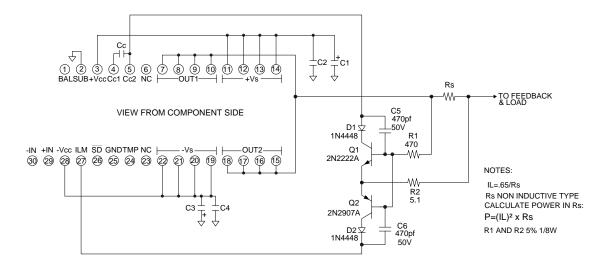



FIGURE 2.
TYPICAL PAD119A CONNECTIONS TO PAD125 ACCESSORY MODULE

EXTERNAL LINEAR CURRENT LIMIT CIRCUIT CONSISTS OF Q1, Q2, D1, D2, C5,C6, R1, R2 AND Rs

FIGURE 3 AN EXTERNAL LINEAR CURRENT LIMIT CIRCUIT